The Dodelson-Widrow mechanism & neutrino self-interactions

Manibrata Sen

UC Berkeley & Northwestern University Network for Neutrinos, Nuclear Astrophysics and Symmetries

Based on 1910.XXXX with André de Gouvêa, Walter Tangarife and Yue Zhang

Topics in Cosmic Neutrino Physics, Fermilab October 9-11

Why sterile neutrinos?

 Provides the SM neutrinos with the 'right' partner.

 Can be used to answer the baryon-asymmetry of the universe through leptogenesis.

 Possible dark matter candidate. Can also be used to solve small-scale structure problems.

Hints in terrestrial experiments?

Why sterile neutrinos?

- Provides the SM neutrinos with the 'right' partner.
- Can give masses to neutrinos.

- Can be used to answer the baryon-asymmetry of the universe through leptogenesis.
- Possible dark matter candidate. Can also be used to solve small-scale structure problems.
- Hints in terrestrial experiments?

Sterile neutrinos as Dark Matter

- 4th mass eigenstate $\nu_4 = \cos\theta \, \nu_{\rm s} + \sin\theta \, \nu_{\rm a}$
- Phase space bounds hold, say $m_4>{
 m keV}$. Tremaine and Gunn, PRL1979

- Can be detected through 1-loop decay into photons: $\nu_{\scriptscriptstyle S}
 ightarrow \nu_a \gamma$.
- Decay rate $\Gamma \propto m_4^5 \sin^2 2\theta$. Pal and Wolfenstein , PRD1982 Sharp X-ray line at $E_\gamma = m_4/2$.
- Non-observation puts bound on $m_4-\sin2\theta$ plane. (Hints of a line at $m_4=7.1\,{\rm keV?}-$ Bulbul et al. Astro. 2014)

Production: the Dodelson-Widrow mechanism

- The ν_s cannot be in thermal equilibrium with SM particles before BBN.
- Must be produced non-thermally with $\theta \ll 1$.

• ν_a oscillates into ν_s before decoupling. Creates a non-thermal population of ν_s . Dodelson and Widrow, PRL1994

$$T \frac{\partial}{\partial T} f_{\nu_s} |_{p/T} = \frac{\Gamma_a}{2H} \langle P(\nu_a \to \nu_s) \rangle f_{\nu_a} ,$$

$$\langle P(\nu_a \rightarrow \nu_s) \rangle = \frac{1}{2} \frac{\Delta^2 sin^2 \, 2 \, \theta}{\Delta^2 sin^2 \, 2 \, \theta + \frac{\Gamma_a^2}{4} + (\Delta cos \, 2 \, \theta - V)^2}$$

$$\Delta = m_s^2 / 2E$$
 Quantum Zeno damping Matter potential

The Dodelson-Widrow mechanism... contd

 A finite lepton asymmetry (Shi-Fuller) Mechanism) can help.

Shi and Fuller, PRL 1999

see Luke's talk!

 Can we open up parameter space without introducing a lepton asymmetry?

Self-Interacting neutrinos

• Note that relic \sim (rate X mixing angle). Increasing rate can satisfy same results for smaller θ .

Kreisch, Cyr-Racine and Dore, 1902.00534

• Consider $\mathscr{L}_{\nu} = \frac{y}{\Lambda^2} (LH)^2 \varphi \quad \xrightarrow{\text{EWSB}} \quad \lambda_{\varphi} \, \nu_a \nu_a \varphi \text{, where }$ φ is a complex scalar. Can be heavy or light.

Berryman, de Gouvêa, Kelly and Zhang PRD2018

Predictions can be tested in laboratory.

Blinov, Kelly, Krnjaic and McDermott, 1905.02727

Heavy mediator ϕ

• Similar to DW, except with a stronger interaction.

$$\Gamma_a \sim \frac{\lambda_{\varphi}^4}{m_{\varphi}^4} E T^4, \qquad V \sim -\frac{\lambda_{\varphi}^2}{m_{\varphi}^4} E T^4$$

• Integrate around peak-production to obtain $\Omega \propto \frac{\lambda_{\varphi}^3}{m_{\varphi}^2} \, m_4 \, sin^2 \, 2 \, \theta$.

Production peaks at a lower temperature

Light mediator ϕ

• If $m_{\varphi} < T$, then φ can be produced on-shell in the plasma.

- . Now, $\Gamma_a \sim V \sim \frac{\lambda_\varphi^2 T^2}{E}$. (Note that V changes sign)
- $\Gamma_a \sim \lambda_\varphi^2$, hence decay is more important than scattering, which goes as λ_φ^4 .
- V > 0 allows for resonance in

$$\langle P(\nu_a \to \nu_s) \rangle \sim \frac{\Delta^2 sin^2 2 \theta}{\Delta^2 sin^2 2 \theta + \frac{\Gamma_a^2}{4} + (\Delta cos 2 \theta - V)^2}$$

Numerical and analytical estimates

- Allowed parameter space for $m_{\nu_s} = 7.1 \, \mathrm{keV}, \, \sin^2 2 \, \theta = 7 \times 10^{-11}$
- Analytical estimates:
- 1. Green: heavy φ
- 2. Red: light φ , also λ_{φ} not tiny, hence θ not suppressed. Peak production never reached.
- 3. Blue: light φ , also λ_{φ} tiny. $\theta_{\rm mat} \sim \theta_{\rm vac}$

de Gouvêa, MS, Tangarife and Zhang

Allowed Relic Density window

de Gouvêa, MS, Tangarife and Zhang

Allowed Relic Density window

Can be used to satisfy the 3.5 keV X-ray line also ~

$$m_{\nu_s} = 7.1 \, \mathrm{keV}, \; \sin^2 2\theta = 7 \times 10^{-11}$$
 Bulbul et al. Astro. 2014

Experimental tests

de Gouvêa, MS, Tangarife and Zhang

- Interested in range $1\,\mathrm{MeV} \leq m_{\varphi} \leq 10\,\mathrm{GeV}$
- $K^- \to \mu^- \nu_\mu \varphi$, $\varphi \to \nu \nu$. Bounds from ${\rm Br}(K^- \to \mu^- 3\nu) < 10^{-6}$.
- BBN bounds on m_{φ} .
- DUNE can look for "wrong sign muon" in $\nu_{\mu}N \to \mu^+N'\varphi$.

Berryman, de Gouvêa, Kelly and Zhang PRD2018 Blinov, Kelly, Krnjaic and McDermott, 1905.02727 Kelly and Zhang PRD 2019

Summary

 The SM appended with sterile neutrinos, and a new scalar, which mediates active neutrino self-interactions, much stronger than weak interactions.

 Sterile neutrinos can be produced non-thermally via freeze-in, using new interactions. Stronger interactions helps alleviate tensions with DW mechanism. Also a possible candidate for the 3.5 keV line.

Can be probed using upcoming neutrino experiments like DUNE.

Backup

